Proof of the Basic Theorem on Concept Lattices in Isabelle/HOL

نویسندگان

  • Baris Sertkaya
  • Halit Oguztüzün
چکیده

This paper presents a machine-checked proof of the Basic Theorem on Concept Lattices, which appears in the book ”Formal Concept Analysis” by Ganter and Wille, in the Isabelle/HOL Proof Assistant. As a by-product, the underlying lattice theory by Kammueller has been extended.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Formal Proof of Sylow's Theorem An Experiment in Abstract Algebra with Isabelle HOL

The theorem of Sylow is proved in Isabelle HOL. We follow the proof by Wielandt that is more general than the original and uses a non-trivial combinatorial identity. The mathematical proof is explained in some detail leading on to the mechanization of group theory and the necessary combinatorics in Isabelle. We present the mechanization of the proof in detail giving reference to theorems contai...

متن کامل

Mechanical Analysis of Finite Idempotent Relations

We use the technique of interactive theorem proving to develop the theory and an enumeration technique for finite idempotent relations. Starting from a short mathematical characterization of finite idempotents defined and proved in Isabelle/HOL, we derive first an iterative procedure to generate all instances of idempotents over a finite set. From there, we develop a more precise theoretical ch...

متن کامل

Structured Proofs in Isar/HOL

Isar is an extension of the theorem prover Isabelle with a language for writing human-readable structured proofs. This paper is an introduction to the basic constructs of this language.

متن کامل

A Solution to the PoplMark Challenge in Isabelle/HOL

We present a solution to the PoplMark challenge designed by Aydemir et al., which has as a goal the formalization of the metatheory of System F<:. The formalization is carried out in the theorem prover Isabelle/HOL using an encoding based on de Bruijn indices. We start with a relatively simple formalization covering only the basic features of System F<:, and explain how it can be extended to al...

متن کامل

Using Yices as an automated solver in Isabelle/HOL

We describe our integration of the Yices SMT solver into the Isabelle theorem prover. This integration allows users to take advantage of the powerful SMT solving techniques within the interactive theorem proving environment of Isabelle, considerably increasing the automation level for a significant subset of Isabelle/HOL.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004